Studies of methionine cycle intermediates (SAM, SAH), DNA methylation and the impact of folate deficiency on tumor numbers in Min mice.

نویسندگان

  • Sahar Sibani
  • Stepan Melnyk
  • Igor P Pogribny
  • Wei Wang
  • Francois Hiou-Tim
  • Liyuan Deng
  • Jacquetta Trasler
  • S Jill James
  • Rima Rozen
چکیده

Several epidemiological studies have suggested a modulatory effect of dietary folate intake on the risk of colorectal cancer. The molecular basis for this inverse association is not clearly understood, but may involve alterations in DNA methylation. In this study, we examined the levels of methylation intermediates [S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH)] and of global DNA methylation in the pre-neoplastic small intestine of Min (multiple intestinal neoplasia) mice. We also studied the effect of folate/choline deficiency on these parameters and on tumor multiplicity in this animal model. In folate-adequate Min mice, we identified positive linear correlations between SAM or SAH and tumor numbers (R(2) = 0.38, P < 0.005; R(2) = 0.26, P = 0.025, respectively). A positive correlation between global DNA hypomethylation and tumor multiplicity was also observed (R(2) = 0.29, P = 0.014). These three biochemical determinants (SAM, SAH and DNA hypomethylation) may, therefore, serve as early markers of cell transformation. Folate/choline deficiency, however, did not produce a consistent effect on tumor numbers in three separate experiments. As an increase in tumor numbers was observed only in folate- and choline-deficient mice with low levels of SAM and DNA hypomethylation, the modulatory role of folate may be dependent on the transformation state of the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model.

Folate is an essential co-factor in the remethylation of homocysteine to methionine, thereby ensuring the supply of S-adenosylmethionine, the methyl group donor for most biological methylations, including that of DNA. Aberrant patterns and dysregulation of DNA methylation are consistent events in carcinogenesis and hence, DNA methylation is considered to be mechanistically related to the develo...

متن کامل

Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig.

Alcoholic liver disease is associated with abnormal hepatic methionine metabolism and folate deficiency. Because folate is integral to the methionine cycle, its deficiency could promote alcoholic liver disease by enhancing ethanol-induced perturbations of hepatic methionine metabolism and DNA damage. We grouped 24 juvenile micropigs to receive folate-sufficient (FS) or folate-depleted (FD) diet...

متن کامل

O-7: Improved In Vitro Development of Cloned Bovine Embryos Using S-Adenosylhomocysteine,A Non-Toxic Epigenetic

Background: Development of cloned bovine embryos. Materials and Methods: Oocytes collection,oocyte denudation, oocyte enucleation, nuclear transfer, electrofusion, reconstructed embryo activation, culture of reconstructed and IVF embryo,and treatment with SAH post fusion interval Treatment of reconstructed embryos with TSA for 12 hours after activation, preparation of somatic donor cells, donor...

متن کامل

Folic Acid Supplementation Delays Atherosclerotic Lesion Development by Modulating MCP1 and VEGF DNA Methylation Levels In Vivo and In Vitro

The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic acid may act via an epigenetic gene silencing mechanism to ameliorate atherosclerosis...

متن کامل

Brain function in the elderly: role of vitamin B12 and folate.

Vitamin B12 (cobalamin) deficiency associated neuropathy, originally called subacute combined degeneration, is particularly common in the elderly. The potential danger today is that with supplementation with folic acid of dietary staples such as flour, that the incidence of this disease could rise as folic acid, as opposed to natural folate (N5CH3HFGlu1), enters the cell and the metabolic cycle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2002